Axial and equatorial isomers in an isonitrile-substituted osmium-antimony cluster

Guizhu Chen, Weng Kee Leong *
Department of Chemistry, National University of Singapore, Kent Ridge, Singapore 119260, Singapore

Received 18 March 1998

Abstract

The reaction of ${ }^{\prime} \mathrm{BuNC}$ with the osmium-antimony cluster $\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}\left(\mu-\mathrm{SbPh}_{2}\right)(\mathbf{1})$ proceeded via $\mathrm{Os}-\mathrm{Os}$ bond cleavage to give $\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{SbPh}_{2}\right)\left(\mathrm{CNBu}^{\prime}\right)$ (2) in which the ${ }^{\text {t }} \mathrm{BuNC}$ ligand was added onto one of the osmium atoms bridged by the antimony. Cluster 2 exists in isomeric forms, where the ${ }^{\prime} \mathrm{BuNC}$ ligand occupies either an axial ($a-\mathbf{2}$) or an equatorial ($e-2$) position with respect to the $\mathrm{Os}_{3} \mathrm{Sb}$ plane. In solution, $e-\mathbf{2}$ was found to occur as a mixture of isomers in which the isonitrile was presumably either cis to the unique osmium or to the antimony. © 1999 Published by Elsevier Science S.A. All rights reserved.

Keywords: Osmium; Antimony; Clusters; Isomers

1. Introduction

Compounds containing $\mu-\mathrm{SbR}_{2}$ ligands are very rare; the only triosmium cluster containing a $\mu-\mathrm{SbR}_{2}$ ligand reported to date is $\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}\left(\mu-\mathrm{SbPh}_{2}\right)$ (1) [1]. Cluster 1 undergoes nucleophilic addition reactions with either $\mathrm{EPh}_{3}(\mathrm{E}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$ or CO via an $\mathrm{Os}-\mathrm{Os}$ bond cleavage. In these adducts, the ligands occupy an equatorial position with respect to the $\mathrm{Os}_{3} \mathrm{Sb}$ plane [2]. This stereochemistry of substitution was consistent with that observed previously in triosmium cluster chemistry; it has been established that N and C donor ligands which are rod-like, such as cyanides and isonitriles, tend to occupy axial positions and this has been attributed to electronic reasons [3]. In this paper we report that the tert-butylisonitrile adduct of $\mathbf{1}$ does not show such an electronic preference for an axial site.

2. Results

The reaction of $\mathbf{1}$ with an excess of ${ }^{t}$ BuNC proceeded

[^0]at room temperature to give isomers of the adduct $\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{SbPh}_{2}\right)\left(\mathrm{CNBu}^{t}\right)$ (2) via the cleavage of an $\mathrm{Os}-\mathrm{Os}$ bond. The adduct 2 was separated by column chromatography into two bands, both of which were found to have the isonitrile ligand on one of the antimony-bridged osmiums, and differed only in that in one, the isonitrile occupied an axial coordination site (a-2), and in the other, an equatorial coordination site (e-2) (with respect to the $\mathrm{Os}_{3} \mathrm{Sb}$ plane). The molecular geometries of the adducts $\mathbf{2}$ were confirmed by singlecrystal X-ray structural studies (Figs. 1 and 2). The terminal metal hydrides were located in the crystallographic studies and confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. The spectra of both compounds showed resonances at about -8 ppm , consistent with the presence of a terminal OsH. Furthermore, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $e-2$ showed two resonances, indicating the presence of isomers which differed in the arrangement of the equatorial isonitrile relative to the antimony atom (Fig. 3). There was no spectroscopic evidence that $a-2$ existed as a mixture of isomers.

To our knowledge, this is the first example of a substituted triosmium cluster which exists as both axial and equatorial isomers, which are separable, and which
did not readily interconvert. It provided an opportunity for us to assess the influence of axial versus equatorial substitution on the molecular geometry. A comparison of the structures of $a-2$ and $e-2$ showed that the largest differences in bond parameters were, as to be expected, associated with $\operatorname{Os}(1)$ to which the isonitrile ligand was bonded. For example, the two axial CO ligands on $\operatorname{Os}(1)$ in $e-2$ were slightly bent away from a mutually trans arrangement ($\angle \mathrm{C}(11)-$ $\left.\mathrm{Os}(1)-\mathrm{C}(13)=170.9(3)^{\circ}\right)$ while the axial CO and ${ }^{t}$ BuNC ligands in $a-2$ were closer to being mutually trans $\left(\angle \mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(13)=178.3(3)^{\circ}\right)$. In addition, the $\mathrm{Os}(1)-\mathrm{Sb}(4)$ bond length was longer in $a-2$ (2.6790(5) and 2.6674(5) \AA for $a-2$ and $e-2$, respectively). Both these differences may be explained on the basis that π-bonding effects are dominant and that the π-accepting ability was in the order: $\mathrm{CO}>$ ${ }^{t} \mathrm{BuNC}>\mathrm{SbPh}_{2}$. Thus, the two strong π-accepting CO ligands in e-2 deviated from linearity to avoid a mutually trans arrangement-the 'umbrella' effect [4]; and the strongly π-accepting CO trans to $\mathrm{Sb}(4)$ in $a-2$ weakened the $\mathrm{Os} \rightarrow \mathrm{Sb} \pi$ back-bonding thus lengthening the $\mathrm{Os}(1)-\mathrm{Sb}(4)$ bond as compared with the case in $e-2$ where ${ }^{'} \mathrm{BuNC}$ was trans to $\mathrm{Sb}(4)$. Steric factors influence the effect of the ${ }^{\text {'BuNC }}$ ligand on the $\mathrm{Os}(1)-\mathrm{Os}(3)$ bond. In both isomers, the ${ }^{\dagger} \mathrm{BuNC}$ was cis to the $\mathrm{Os}(1)-\mathrm{Os}(3)$ bond. The CO ligand on $\mathrm{Os}(3)$ cis to the ${ }^{\text {' }} \mathrm{BuNC}$ ligand in both isomers were similarly disposed $\left(\angle \mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{Os}(1)=86.6(2)^{\circ}\right.$ in $a-2$, ($\angle \mathrm{C}(34)-\mathrm{Os}(3)-\mathrm{Os}(1)=85.8(2)^{\circ}$ in $e-2$), while the ${ }^{t}$ BuNC ligand itself was bent more towards the $\mathrm{Os}(1)-\mathrm{Os}(3)$ bond in $a-2(\angle \mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(13)=$ $\left.90.6(2)^{\circ}\right)$ than in $e-2 \quad(\angle \mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(14)=$ $\left.94.5(2)^{\circ}\right)$. The closer contact for $e-2$ gave rise to a longer $\mathrm{Os}(1)-\mathrm{Os}(3)$ bond (3.0035(4) and 2.9965(4) \AA, respectively, for $a-2$ and $e-2$).

3. Experimental section

All reactions and manipulations were carried out under nitrogen by using standard Schlenk techniques. Solvents were purified, dried, distilled, and stored under nitrogen prior to use. Infrared spectra were recorded as hexane solutions. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded as d_{8}-toluene solutions on a Bruker ACF300 FT-NMR spectrometer. Microanalyses were carried out by the microanalytical laboratory at the National University of Singapore.

Cluster 1 ($34 \mathrm{mg}, 0.030 \mathrm{mmol}$) and excess ${ }^{\text {t }}$ BuNC $(0.2 \mathrm{ml})$ were stirred in hexane $(20 \mathrm{ml})$ at room temperature for 10 h . The solvent and volatile compounds were removed in vacuo and the residue separated by column chromatography on silica gel. Elution with dichloromethane-hexane (10:90, v/v) gave two bands.

Band 1 gave e-2 ($20 \mathrm{mg}, 55 \%$). Found: C, 26.80 ;

Fig. 1. ORTEP diagram of $a \mathbf{- 2}$ (50% probability thermal ellipsoids). $\mathrm{Os}(1)-\mathrm{Os}(3)=3.0035(4) ; \quad \mathrm{Os}(2)-\mathrm{Os}(3)=2.9710(4) ; \quad \mathrm{Os}(1)-\mathrm{Sb}(4)=$ $2.6790(5) ; \quad \mathrm{Os}(2)-\mathrm{Sb}(4)=2.6333(5) \quad \AA ; \quad \mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{Sb}(4)=$ $76.488(13) ; ~ \mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Sb}(4)=77.738(13) ; \mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)=$ $90.235(10) ; \quad \mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(33)=86.6(2) ; \quad \mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(13)=$ $90.6(2) ; \mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(13)=178.3(3)^{\circ}$.
$\mathrm{H}, 1.83 ; \mathrm{N}, 1.11$. Calc. for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{NO}_{10} \mathrm{Os}_{3} \mathrm{Sb}: \mathrm{C}$, 26.78; H, 1.65; N, 1.16. $v(\mathrm{CO}): 2088 \mathrm{~m}, 2056 \mathrm{~s}, 2042 \mathrm{~m}$, $2022 \mathrm{vs}, 2003 \mathrm{~m}, 1996 \mathrm{~m}, 1982 \mathrm{~m}, 1967 \mathrm{~m} \mathrm{~cm}{ }^{-1} ; v(\mathrm{CN})$: $2195 \mathrm{w} \mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 1.57$ (s, ${ }^{t} \mathrm{BuNC}$), -8.28 (s, OsH), -8.75 (s, OsH).

Fig. 2. ORTEP diagram of e-2 (50\% probability thermal ellipsoids). $\mathrm{Os}(1)-\mathrm{Os}(3)=2.9965(4) ; \quad \mathrm{Os}(2)-\mathrm{Os}(3)=2.9759(4) ; \quad \mathrm{Os}(1)-\mathrm{Sb}(4)=$ $2.6674(5) ; \quad \mathrm{Os}(2)-\mathrm{Sb}(4)=2.6341(5) \quad \AA ; \quad \mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{Sb}(4)=$ $76.221(12) ; ~ \mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Sb}(4)=77.070(12) ; \mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)=$ $90.103(10) ; \quad \operatorname{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(34)=85.8(2) ; \quad \mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(14)=$ $94.5(2) ; \mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(13)=170.9(3)^{\circ}$.

Isomer B

Crystal data for e-2: $\quad \mathrm{C}_{20} \mathrm{H}_{10} \mathrm{NO}_{10} \mathrm{Os}_{3} \mathrm{Sb}, \quad M=$ 1210.79, orthorhombic, space group Pbca, $a=$ 12.8615(1), $\quad b=17.7514(3), \quad c=28.8072(4) \quad \AA ; \quad U=$ 6577.0(2) $\AA^{3} ; Z=8 ; \rho_{\mathrm{c}}=2.446 \mathrm{mg} \mathrm{m}^{-3} ; \mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)=$ $12.418 \mathrm{~mm}^{-1}, T=298 \mathrm{~K}, 38701$ reflections collected, 7764 unique reflections, final $R=6.63 \%, w R=6.72 \%$ for all data and 396 parameters.

Band 2 gave $a-2$ ($10 \mathrm{mg}, 28 \%$). Found: C, 26.92; H, 1.90; N, 1.02. Calc. for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{NO}_{10} \mathrm{Os}_{3} \mathrm{Sb}$: C, 26.78; H, 1.65 ; N, 1.16. $v(\mathrm{CO}): 2090 \mathrm{w}, 2062 \mathrm{~m}, 2042 \mathrm{~m}, 2020 \mathrm{vs}$, $1996 \mathrm{~m}, 1982 \mathrm{~m}, 1966 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{CN}): 2178 \mathrm{w} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}$ 1.57 (s, ${ }^{\text {BuNC}}$), $-8.21(\mathrm{~s}, \mathrm{OsH})$.

Crystal data for $a-2: \quad \mathrm{C}_{20} \mathrm{H}_{10} \mathrm{NO}_{10} \mathrm{Os}_{3} \mathrm{Sb}, \quad M=$ 1210.79, triclinic, space group $P 1, a=9.5713(1), b=$ 10.0990(2), $\quad c=18.8008(2) \quad \AA, \quad \alpha=84.771(1), \quad \beta=$
$75.328(1), \alpha=69.829(1)^{\circ} ; \quad U=1650.20(4) \AA^{3} ; \quad Z=2$; $\rho_{\mathrm{c}}=2.437 \mathrm{mg} \mathrm{m}^{-3} ; \mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)=12.373 \mathrm{~mm}^{-1}, T=$ $298 \mathrm{~K}, 12990$ reflections collected, 7235 unique reflections, final $R=5.13 \%, w R=8.35 \%$ for all data and 386 parameters.

Acknowledgements

This work was supported by the National University of Singapore (Research Grant No. RP 960677) and one of us (G.C.) thanks the University for a Research Scholarship.

References

[1] B.F.G. Johnson, J. Lewis, A.J. Whitton, S.G. Bott, J. Organomet. Chem. 389 (1990) 129.
[2] G. Chen, W.K. Leong, J. Chem. Soc., Dalton Trans. in press.
[3] A.J. Deeming, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 7, Elsevier, Oxford, 1995, pp. 683-746.
[4] W.K. Leong, F.W.B. Einstein, R.K. Pomeroy, Organometallics 15 (1996) 1582.

[^0]: * Corresponding author. E-mail: chmlwk@nus.edu.sg

